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Mastitis is a prevalent disease that causes economic losses through decreased 
milk yield, discarded milk during treatment, and veterinary costs (Ibrahim, 2017) 
and negatively impacts animal welfare (Hillerton, 1998).  

Milk microbiome (microbes inhabiting the milk and their interactions) profiles are 
influenced by age, location, feed, and health status (Zapata and Quagliarello, 2015) 
and disruption of these communities (dysbiosis) has been associated with 
mastitis (Derakhshani et al., 2018).  

Accurate identification of mastitis pathogens is vital to ensure appropriate 
treatment and reduce antimicrobial resistance development. However, current 
guidelines lack  consistency about best practice for mastitis sample storage prior 
to culture, leading to potential misdiagnosis. 

The objectives of this study were to compare milk microbiome profiles between 
animals with differing health status, explore the role of fungi in the milk microbiome 
and investigate differences in microbiome profiles of single vs repeated mastitis 
cases. We also investigated the impact of freezing and glycerol preservation on 
mastitis samples. 

Milk samples were collected from 40 lactating cows: clinical mastitis (C, n=10), 
repeated clinical mastitis (R, n=10), subclinical mastitis (S, n=10, SCC > 200,000 
cells/ml), and healthy (H, n=10, no clinical mastitis history and ≥ two subsequent 
SCCs <100,000 cells/ml). DNA was extracted from milk samples and shotgun 
sequenced to obtain a microbiome profile for each sample. We also tested the 
culturability of clinical mastitis milk samples stored at -20°C or -80°C for up to 6 
months with and without glycerol (15% or 30%). 

The number of taxa (microbes) and their distribution were not significantly 
different between sample types; however, microbial abundances were more evenly 
distributed in healthy samples in comparison to unhealthy samples (where 
Clostridium and Vibrio were more dominant, fig. 1). Samples that cultured as fungal 
mastitis were less dominated by the top 10 bacteria, showing more evenly 
distributed microbiome profiles. We also observed similar levels of variation 
between animals within health groups.  
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Partial least squares discriminant analyses were used to compare C, S and R 
microbiome profile to H, and C to R, and to identify the most important microbes 
in differentiating between the samples (table 1). For example, 
Companilactobacillus, which increased in C compared to H, has been observed on 
dairy farms, and spreads through vectors such as flies (Neupane et al., 2024). Both 
Sphingobacterium and Chryseobacterium, increased in C compared to H, have 
been identified in milk samples with Sphingobacterium being associated with 
increased SCC and Chryseobacterium  thought to be an opportunistic bacterium 
(Hagi et al., 2013; Kuang et al., 2009; Oikonomou et al., 2014).   

Comparing microbiome profiles of C with R showed that R had decreased relative 
abundance of pathogens traditionally associated with mastitis, including 
Enterococcus and Streptococcus, potentially due to previous antibiotic 
administration. Limosilactobacillus, increased in R, is a lactic acid bacterium which 
inhibits the growth of common mastitis pathogens including E. coli, 
Staphylococcus aureus, Enterococcus faecalis and Streptococcus agalactiae 

Figure 1 Relative abundance of the top 10 most abundant genera from metagenomic shotgun 
sequencing data. Data is grouped by cow mastitis health status, with 10 samples in each group. 



(Chauhan et al., 2024). Limosilactobacillus has also been shown to be effective in 
reducing mastitis in humans when administered as a probiotic (Ozen et al., 2023).  

The microbiome of the clinical mastitis cases diagnosed as of fungal origin during 
culture (Candida parasilopsis, yeast) did not include fungal taxa. Whilst shotgun 
sequencing methods rely on DNA, fungi were identified during culture using 
MALDI-TOV which relies on protein molecules. After DNA extraction, DNA of these 
specific fungi may have been present at too low concentrations to be identified or 
have degraded.  

Table 1 Most important microbes to differentiate sample types. H, C, S, R, refer to healthy, clinical, subclinical, 
and repeated clinical mastitis cases, respectively. Shaded cells represent increase in relative abundance in 
the C, S, and R in comparison to H, and R in comparison to C.   

 

Our investigation into freezing temperature and duration showed that culture 
results were impacted by both, leading to inaccurate pathogen identification. The 
impact of freezing on clinical mastitis samples varied by pathogen. Serratia 
liquefaciens was identified in a fresh sample. After one month, this sample resulted 
in sterile growth, Escherichia coli was identified in milk samples even after six-
month storage at -20°C or -80°C, unlike other Gram-negative pathogens. Previous 
work has shown after one year at -20°C, E. coli was no longer culturable (Leclair et 
al., 2019). These results highlight the potential risk of inaccurate pathogen 
identification after freezing samples. 

The investigation into the efficacy of glycerol as a preservative was inconclusive. 
Cases to which glycerol was added produced Gram-positive bacteria or E. coli on 
culture, which were unaffected by freezing. 

Our work shows that milk microbiome profiles are affected by mastitis incidence. 
Further investigation into microbial function, biochemical pathways, and 
interactions is ongoing. Future guidance should discourage freezing of milk 
samples prior to mastitis culture and should include the addition of fungi specific 
culture, to ensure the most accurate results.   

 

 

H vs C H vs S H vs R C vs R 
Cutibacterium Geothrix Catellatospora Sulfuriferula 

Companilactobacillus Catellatospora Proteiniclasticum Limosilactobacillus 
Sphingobacterium Neisseria Tissierella Enterococcus 
Chryseobacterium Gluconobacter Cutibacterium Streptococcus 

Herbinix Dyadobacter Tepiditoga Citrobacter 
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